Topic: Nonlinear Observers and Everyday Applications in Motion Estimation
This talk presents recent results on nonlinear observers (estimation algorithms) and their applications in motion estimation problems ranging from wearable sensors to bicycles. First, a new observer design technique that integrates the classical high-gain observer with a novel LPV/LMI observer to provide significant advantages compared to both methods is presented. Second, the challenges in designing observers for nonlinear systems which are non-monotonic are discussed. Non-monotonic systems are commonly encountered, but popular observer design methods fail to yield feasible solutions for such systems. Hybrid observers with switched gains enable existing observer design methods to be utilized for these systems. Following the analytical observer results, some of their applications in motion estimation are presented, including a wearable device for activity classification in Parkinson’s disease patients, a smart bicycle that utilizes cameras and sensor fusion to protect itself from other vehicles on the road, autonomous cars equipped for teleoperator remote intervention, and smart agricultural/construction vehicles that utilize inexpensive sensors for end-effector position estimation. Each application is accompanied by a video of a prototype experimental demonstration. One of these applications has been successfully commercialized through a start-up company which sold over 11,000 sensor boards in 2022.
Rajesh Rajamani obtained his M.S. and Ph.D. degrees from the University of California at Berkeley and his B.Tech degree from the Indian Institute of Technology at Madras. He joined the faculty in Mechanical Engineering at the University of Minnesota in 1998 where he is currently the Benjamin Y.H. Liu-TSI Endowed Chair Professor and Associate Director (Research) of the Minnesota Robotics Institute. His active research interests include estimation, sensing and control for smart mechanical systems. Dr. Rajamani has co-authored over 180 journal papers and is a co-inventor on 19 patents/ patent applications. He is a Fellow of IEEE and ASME and has been a recipient of the CAREER award from the National Science Foundation, the O. Hugo Schuck Award from the American Automatic Control Council, the Ralph Teetor Award from SAE, the Charles Stark Draper award from ASME, and a number of best paper awards from journals and conferences. Several inventions from his laboratory have been commercialized through start-up ventures co-founded by industry executives. One of these companies, Innotronics, was recently recognized among the 35 Best University Start-Ups of 2016 by the US National Council of Entrepreneurial Tech Transfer.