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® Why traffic data analysis?

» Prediction of traffic parameters
» Control traffic and reduce congestion
» Identification of shortest path between a pair of origin and destination

» Dynamic route guidance, incident detection, freeway ramp metering control etc.
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® Why traffic data analysis?

» Prediction of traffic parameters
» Control traffic and reduce congestion
» Identification of shortest path between a pair of origin and destination

» Dynamic route guidance, incident detection, freeway ramp metering control etc.

Figure source: Mori, U., Mendiburu, A, Alvarez, M., & Lozano, J.A. (2015).A review of travel time estimation and forecasting for Advanced Traveller Information
Systems. Transportmetrica A: Transport Science, 11(2), | 19-157.
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DATA COLLECTION

® Data was collected using GPS units fixed on MTC buses

in Chennai. otk }
A oo TR %

® Study stretch - 19B bus route (Length- 29.4 km)- wl S o g
Kelambakkam to Saidapet. pp./m <ol

® GPS data was collected every 5s. (Date, time stamp, e iC
latitude and longitude of the bus location.)

® 1,024 trips over a period of 45 days.

® The distance between two consecutive GPS points was - gv

calculated using Haversine formula (Chamberlain, 2013).
19B bus route

® 500 m section travel times were considered.
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DATA HIERARCHY

Data
Temporal Spatial
I
{ 7 ! 7 1 A¢ . I - - I " - } -
. rea resence o resence o resence o
Yearly |[Monthly | | Weekly | | Daily | | Hourly y : : .

— characteristics signal bus stops intersections
. : | Urban | Sections with Sections with Sections with
Weekday Weekend signal bus stop intersection

| : : | : puburban Sections Sections Sections without
Peak | |Off- peak|| Peak Off-peak - without ~without bus S
) ‘ mtersection
-~ Rural sienal stop

Elsa Shaji, H., Tangirala, A. K., & Vanajakshi, L. (2018). Evaluation of Clustering Algorithms for the Prediction of Trends in Bus

Travel Time. Transportation Research Record, 2672(45), 242-252.
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VARIATIONS IN TRAVEL TIMES

Color Key
and Histogram
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Heat maps showing travel time variations for (a) October 4, (b) October 11.

Peak and off- peak timings do not remain constant for a day over different weeks.
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VARIATIONS IN TRAVEL TIMES

Color Key
and Histogram

Manual grouping may not be efficient in
separating these patterns
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Heat maps showing travel time variations for (a) October 4, (b) October 11.

Peak and off- peak timings do not remain constant for a day over different weeks.
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PATTERN SEQUENCE FORECASTING

Data _ Training data ! _ !
—»| Trend extraction » Clustering !

Insert next test data

The date is initially clustered !
and cluster labels are obtained. End
Clustering
Step 2: Prediction ¥ Means
Predicti - od tb d - »| Obtain k (Elbow method and Dunn Index) ——»
redaiction 1s carriea ou dSe : : Chiatec T abels
el Nomaliadion H1erarch1cal> Obtain k (Elbow method and Dunn Index) i:l& =
on the cluster labels. SOM _ :
Obtain k (SOM map) I — o
Prediction
Alvarez, F. M., Troncoso, A., Riquelme, J. C., & Ruiz, J. S. A. = !
(2010). Energy time series forecasting based on pattern Training! data and ‘ ( Predicti
sequence similarity. IEEE Transactions on Knowledge and Data cluster labels Obm W .(Cross Scarch for pa.ttern? Estimate sample fedicyon >
Engineering, 23(8), 1230-1243. ! > validation) sequence of size W

Elsa Shaji, H., Tangirala, A. K., & Vanajakshi, L. (2018).
Evaluation of Clustering Algorithms for the Prediction of Trends
in Bus Travel Time. Transportation Research Record, 2672(45), K
242-252.
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PREDICTION-ORIENTED CLUSTERING

Training data

Prediction - single + Prediction- oriented | Prediction Model
- g

model on entre |—>» clusterin :
dataset : g ! PM;

lteration O
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PREDICTION-ORIENTED CLUSTERING

Prediction- oriented clustering

Training data | Prediction - single ! Prediction- oriented : Prediction Model el time arediction o k- means clustering .
model on entire  |——») ; r > PR : »  Normalization y > Obtain k
> dataset : clustering : PM, from (i-1)™" iteration
teratono

Cluster 1 Cluster 2 Cluster 3 %':_Cluster k
Cluster Cluster Cluster Cluster
model 1 model 2 model 3 model k

=i+
Prediction model
PM;

5 Calculate
: average RMSE

No

Is A(average
RMSE) =& ?

Choose the
corresponding PM;
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PREDICTION-ORIENTED CLUSTERING

Prediction- oriented clustering

RMSE) =8 ?

Choose the
corresponding PM;

Training data | FPrediction - single | Prediction- oriented | Prediction Model iravel ime presiction | k- means clustering 5
model on entire  |——») lusteri r > th. : —»  Normalization y > Obtain k '

—> ' ' ) 2 ' '
dataset ! clustering | PM; from (~1)" iteration :

lterationo

E {:Cluster1 . iCIuster k ;

5| Based on selection : l l l l 5

Cluster Cluster Cluster Cluster |

' model 1 model 2 model 3 model k '

Testing data Calculate prediction : " :
> —> ' =i '

prediction accuracy : Prediction model |

! PM; :

Based on fusion : :

) ' i Calculate :

. average RMSE

s No s

' Is A(average '
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PREDICTION-ORIENTED CLUSTERING

Prediction- oriented clustering

Travel time and

o Prediction - single : - . ' e . ! . .
Training data ' - ' ' k- means clustering
g model on entire  |——; " rediction-oriented ; Prediction Model ,, travel ime prediclion { ) Ngmalization . > Obtain k
E— dataset ! clustering : PM; from (~1)" iteration

lteration O

— Based on selection l l l l

Cluster Cluster Cluster Cluster

model 1 model 2 model 3 model k

Testing data .
ek ) Calculate prediction E i B 5
prediction accuracy , Predlcgll\c;ln model

' i '

> Based on fusion

Calculate
average RMSE

» Links both clustering and prediction via an No
iterative procedure. '

Is A(average
RMSE) =& ?

» Both travel times and their predictions are used

D I Choose the
as feature vectors for clustering. g cortesponding P '
» Identifies points similar in terms of both | fro

magnitude and predictability .
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RESULTS

Measured and predicted travel times for a sample trip

300
<O Measured <O~ Predicted_based on selection Predicted/b on fusion
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RESULTS

Measured and predicted travel times for a sample trip Error metrics for testing
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COMPARISON BETWEEN ALGORITHMS

400
Absolute error_Measured vs Predicted (Prediction-oriented clustering)
Absolute error_Measured vs Predicted (Prediction and clustering disjoint)
B¥ Absolute error_Measured vs Predicted (manual grouping)
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Trip starting time (hh:mm)

Absolute error for a sample section over time of the day

Manual grouping: Data was split into weekdays and weekends
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