Levering Telematics & Contextual Data Analysis for Driving Risk Prediction

Srinivasan Parthasarathy

Department of Computer Science and Engineering

The Ohio State University

Joint work with S. Moosavi (OSU \rightarrow Lyft), M. Sammavatian and R. Ramnath (OSU)

December 15 2019

PAS0536

EAR-1520870

Motivation and Research Problem

Summary of Contributions

I: Characterizing Driving Context

II: Characterizing Driving Style

III: Context-aware Driving Risk Prediction

Conclusion and Future Work

Motivation (Human cost)

- Traffic Accidents in the United States:
 - ~ 6 million accidents per year (officially reported)
 - ~ 2.3 million car accidents injuries or disabilities per year
 - ~ 37,000 traffic death per year

Source: Association For Safe International Road Travel

Motivation (Business Cost)

- The automobile insurance in the US: loss to written premium
 - Sources: Insurance Information Institute and the Federal Highway Administration

How to reduce the loss?

- By helping Drivers
 - To improve their skills and adjust their behavior and reduce premiums
- By helping Insurance Companies
 - To better predict risk and reduce insurance loss
- By helping Cities
 - To prevent disastrous events, better manage the traffic, and redesign transportation infrastructures if necessary

Research Problem: How to Determine Driving Risk?

Constraints

- Driving risk depends on the personality of drivers
- Driving risk depends on driving context

Summary of Contributions

I: Characterizing Driving Context

Geo-spatiotemporal Pattern Discovery (ACM SIGKDD 2019)

- Geo-spatiotemporal data: associated with geo-location and time
 - Examples: traffic events, weather events, etc.
- Pattern discovery on geo-spatiotemporal data: co-location, cooccurrence, cause and effect, etc.

Rain

Accident

Congestion

Background and Motivation

- Importance of these patterns
 - Beneficial for urban planning, traffic management, and disaster prediction
- We propose a new framework to:
 - Discover *Propagation* Patterns (or *short-term* impacts)
 - Discover *Influential* Patterns (or *long-term* impacts)

Dataset: Large-scale Traffic and Weather Events

Traffic events: from streaming traffic reports

Entity Type	Raw Count	Relative Frequency	
Accident	1,169,507	8.9%	
Broken-Vehicle	308,112	2.34%	
Congestion	10,542,020	80.18%	
Construction	209,933	1.60%	
Event	32,817	0.25%	
Lane-Blocked	246,832	1.88%	
Flow-Incident	637,489	4.85%	
Total	13,146,710	100%	

Weather events: from historical observations

Entity Type	Raw Count	Relative Frequency	
Severe-Cold	67,285	3.09%	
Fog	454,704	20.87%	
Hail	1,252	0.06%	
Rain	1,384,588	63.54%	
Snow	236,546	10.86%	
Storm	14,863	0.68%	
Precipitation	19,711	0.9%	
Total	2,178,949	100%	

Data was collected from Aug 2016 to Aug 2018 for the contiguous United States (49 states)

Short-term Pattern Discovery

• Propagation of events on a short-term basis

Example

Frequent tree pattern mining approach: [Zaki 2005, Tatikonda&Parthasarathy 2009]

Short-term Pattern Discovery (Cont'd)

- Extracted Relations: ~ 6 million
- Extracted Trees: ~ 1.7 million
- Extracted 90 unique patterns across 49 States
 - *Embedded*, *un-ordered*, *frequent* tree patterns

Short-term Pattern Discovery (Cont'd)

- Represented each state with a one-hot vector of size 90
- Identified 4 clusters of states using K-means
- These clusters represent similarities based on shortterm impacts

Long-Term Pattern Discovery

- Impact of long-term events on their neighborhood
 - **Example**: major construction \rightarrow more traffic jams
- Long-term event: longer than 5 hours
- Main task: Comparing current with before and after time-intervals

Long-Term Pattern Discovery (Cont'd)

- Statistical significance testing to determine impacts
 - Positive: the presence of a long-term event \rightarrow increase in the number of nearby events
 - Negative: the presence of a long-term event → decrease in the number of nearby events
- Results: Impact by Location
- **Observation**: CA, FL, and TX are top states with the most traffic issues

Color Code

- Positive impact by 99% confidence
- Positive impact by 95% confidence
- Positive impact by 90% confidence
- No significant impact

II: Characterizing Driving Style

Characterizing Driving Style (2018 – 2019)

Who is the driver?

Constraint: exploit information on how people drive, instead of where they drive!

Feature extraction

Features T₁ T₂ Тз Т4 T₂₅₆ ... Speed 4.6 4.9 6.4 6.0 6.4 ... Acceleration -1.0 0.3 1.5 -0.4 ... -1 GPS_Speed 4.2 4.7 6.2 6.5 6.1 ... GPS_Accel -0.8 0.5 1.5 -0.8 -0.1 ... 0.2 0.32 Angular_Speed 0.25 0.21 0.21 ... RPM 1250 1400 2400 2100 2360 ... Heading 156 158 168 168 273 ... Acceleration_X 0.85 0.89 1.2 -0.2 -0.6 ... Acceleration_Y 0.4 0.63 0.92 -0.31 -0.5 Acceleration_Z 0.01 0.00 0.01 0.00 0.00 ... ¥ 5.48 5.21 6.21 Mean ... Min 4.6 4.2 5.5 ... 6.4 6.7 6.8 Max 70 (features) ... (c) P-25% 4.83 4.45 5.73 ... P-50% 5.45 5.32 6.2 ... P-75% 6.1 6.4 6.5 ... 1.2 Std 0.86 0.21 ... 128 (time)

(b)

Characterizing Driving Style (Cont'd)

- We proposed several data sampling strategies to avoid spatial bias
- We developed a neural network architecture to encode driving style
- We thoroughly tested our proposal based on real-world data

Representation of Driving Style

III: Context-aware Driving Risk Prediction

Micro and Macro-level Driving Risk Prediction

Micro-level: Prediction for a **Driver**

Macro-level: Prediction for a Region

Macro-level Driving Risk Prediction: Traffic Accident Prediction (ACM SIGSPATIAL 2019)

- Traffic Accidents: explicit indicators of driving risk
 - A global status report: 1.25 million traffic death in 2013
- Related studies over the past few decades
 - Analyzing the impact of environmental stimuli
 - Predicting the frequency of accidents
 - Predicting the risk of accidents

Existing Studies Suffer From ...

- Using small-scale datasets
- Utilizing expensive data sources
- Being inapplicable for real-time purposes

Large-Scale Traffic Accident Dataset

• We propose a process to collect, augment, and publish a large-scale accident data

Traffic Accident Prediction: Problem Statement

- Given
 - A spatial region *R* (size: 5km x 5km)
 - A database of traffic events *E*
 - A database of weather information \boldsymbol{W}
 - A database of points-of-interest P
- Create
 - A representation F_{RT} for R during a time interval T = 15 minutes
 - Label RT by L (0 or 1)
- Find
 - A model *M* to predict *L* when using information from the past two hours

F_{RT} : A Heterogeneous Representation

- Traffic: a quantitative vector of size 7 to account for various traffic events for R during T
- Time: TOD (weekday or weekend), HOD (5 time-intervals), and Daylight (day or night)
- Weather: a vector representing 10 weather attributes for R during T

Time Sensitive

- POI: a quantitative vector for the number of POIs inside R
- Desc2Vec: an embedding representation for the description of past traffic events inside R

Deep Accident Prediction (DAP) Model

- Includes five components
 - Recurrent
 - Captures time-varying info
 - Description-to-Vector
 - Captures prior accident history
 - Points-Of-Interest
 - Captures roadway context
 - Embedding
 - Captures spatial heterogeneity
 - Fully-connected
 - Integrates

Fully-connected Component

Experimental Setup

- We chose six cities
 - Atlanta, Austin, Charlotte, Dallas, Houston, and Los Angeles
- Data
 - From June 2018 to August 2018 (12 weeks)
 - The first 10 weeks as the train and the last two weeks as the test set
- Employed negative-sampling to account for data imbalance issue

Results (Model Comparison, F1-score)

	Model	LR	GBC	DNN	DAP-NoEmbed	DAP
City						
Atlanta		0.54	0.57	0.62	0.62	0.65
Austin		0.58	0.61	0.62	0.62	0.64
Charlotte		0.56	0.60	0.61	0.61	0.63
Dallas		0.30	0.32	0.36	0.43	0.50
Houston		0.49	0.51	0.59	0.58	0.58
Los Angeles		0.41	0.45	0.53	0.53	0.56

Baselines

- Logistic Regression (LR)
- Gradient Boosting Classifier (GBC)
- Deep Neural Network (DNN)
- DAP without Embedding Component (DAP-NoEmbed)

Ongoing Work: Micro-level Driving Risk Prediction

How to determine driving risk?

- Traditionally: by using demographic data
- Today: by using demographic + telematics data

I: Contextualizing Telematics Data

- Maximizing the usage of telematics and contextual data
- Providing various views on driving behavior

II: Building Risk Cohort Classifier

- Refining risk labels by a data-driven process
- Building a classifier based on contextualized telematics data

III: Online Risk Cohort Prediction

- Utilizing contextualized telematics data
- Predicting risk cohort for drivers in real-time

Summary and Future Work

Published Datasets

- **DACT**: A Dataset of Annotated Car Trajectories for driving behavior analysis and transportation research (2017)
- Large-scale Traffic and Weather Events (LSTW): A large-scale dataset of traffic and weather events, containing 25 million events (2019)
- US-Accidents: A data of 2.25 million traffic accidents (2019)

Summary

- Several models were proposed to leverage telematics and contextual data to:
 - Characterize driving context
 - Characterize driving style
 - Predict driving risk
- Our solutions can help ...
 - Drivers to improve their skills
 - Insurance companies to better predict risk and reduce loss
 - Cities to better manage traffic and reduce disastrous events

Future Work

- Extend the usage of Telematics Data
 - Using more sensors and finer-grained data collection rates
- Extend the usage of Contextual Data
 - Utilizing detailed road data, weather data, etc.
- Augment the Risk labels
 - Employing risk labels for sub-trajectories or a series of actions
- Evaluate models in real-world
 - Employing A/B testing

