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 Context: Last Mile Delivery

   

• Delivery Hub: Wishmasters (FEs) carry a subset of shipments and follow a path delivering the 

shipments to the customers.  

• Heterogeneous hubs: shipments vary from less than 100 to over 1000.

• Question - How should the shipments be assigned to FEs? Subsequent, what path should the FEs 

follow to deliver the shipments? 



    Routing Problem

HOW DO WE FIND THE BEST ASSIGNMENT AND PATH?

● Formulate it as an  optimization problem

● Associate a cost function W with every configuration of routes and find the configuration 

that minimizes the cost function.

● Standard choice for cost function :  sum of the total travel times of all FEs/routes. 

● A special case of a single FE  :         Traveling Salesman Problem (TSP)



Vehicle Routing Problem

● This is a  generalization of TSP  - the 

Vehicle Routing Problem. 

● Computation complexity : TSP is 

NP-complete and naturally so is VRP 

(formulated as decision problem; is there 

a solution with total cost less than u? ) 

● 60 years since publication The 

Truck Dispatching Problem  [Dantzig 

1959] introducing the VRP. 



Planned vs On-Demand delivery

FULL INFORMATION

PARTIAL 
INFORMATION

             RELEVANT FOR

 any business involving delivery of pre-determined shipments at 

specific locations.   Ex: e-commerce, online grocery ordering, postal 

service, B2B planning and scheduling.

            CONTRAST WITH

On demand delivery - delivery/assignment planning happens on the 

go as soon as the order is placed (online food ordering, hyperlocal 

deliveries, cab aggregators).



Variants with additional constraints

       Vehicle Routing Problem with Time Window (VRPTW)

●    Routing solution when customers are promised delivery time-window (say 12:00-14:00 ) 

Capacitated Vehicle Routing Problem (CVRP)

●   Maximum capacity of each vehicle/FE in terms of number of shipments.  

Capacitated Vehicle Routing Problem with Time Windows (CVRPTW)

       Both constraints applied simultaneously (as most real world situations would be). 



Out-of-box solver

● Optaplanner ( Java package) - currently in use

● Limitations  ( Results )

○ Routes tend to be elongated and stretched out. 

○ Large overlap in the regions covered by the routes

● Limitations (Flexibility)

1. Probe the details of the algorithm

2. Change the heuristic approaches

3. Examine effects of specific choices of cost 

functions/hyperparameters.

Python out-of-box solvers

Local Solver

Google OR Tools

Neither allow custom 
penalties



Formulating the problem

Given :
1. N customers (and DEPOT)  locations (vertices) 

                                 

2. Pairwise travel time (or distance) matrix 

   3.    Serviceable time window (customer)                

 4. m vehicles each with max capacity Q each



Formulating the problem

Determine: 

              
Routes

1. each customer is covered by exactly one route 
  2.    time window compatibility

          3

    Minimize the cost function  

Feasible solution : All the hard constraints (time-window and capacity are 
satisfied) 



Cost function choices? 
Should reflect the desired characteristics of the route.  

Multiple Objectives

1. Minimize travel time  - studied in classical formulation

2. Minimize uneven distribution of shipments

3.  Minimize occurrence and magnitude of outliers

4. Minimize stretched or extended routes. 

Associate a cost component for each 



              Cost Function Expansion
1. Total travel time 

2. Even distribution of shipments across the vehicles.

        
 “Fairness” cost    : UF  ∝ σ/E[n]       

               Normalization:  √N



Dealing with Outliers (Intuition)

Intuition:             Neighborhood distance

EASY

DODGY
25th percentile distance (7th nearest 
neighbor)

[0.81 0.7  1.01 0.86 0.72 0.67 0.69 0.7  0.8  0.92 1.03 1.09 0.83 
0.91 0.78 0.88 0.57 1.01 0.76 0.73 0.72 0.62 0.86 1.03 1.42 4.12 
4.29 3.84  4.45 4.2 ]



Dealing with Outliers (Formulation)

We determine a z-score for each point in the route depending on the 
distance to the      percentile nearest neighbor. 

   

 -   Median 

  -  Median absolute deviation (from median)



Route compactness

Defining compactness:

80th percentile of the sorted distance for 
every customer

80th percentile of those numbers : 1.35            



TOTAL COST



Approximate Algorithms Approach

●  Exact algorithms are computationally expensive and we use approximate 

algorithms, i.e., those that need not converge to optimality. 

● Broadly, these are characterized by primarily two stages 

○ Construction Heuristics - construction of initial feasible routes ( m routes 

satisfying the constraints)

○ Improvement Heuristics - iteratively improve the routes by intra- and inter- 

route reconfiguration 



Construction Heuristic 

At any given iteration, there are a set of partially constructed routes. 

                  For a given unrouted customer, we consider all feasible insertion positions 

We compute the minimum cost for each vertex



Construction Heuristic..cont’d
(Algorithm)

Insert the 
customer that 
minimizes the 
minimum 
insertion cost. 



Insertion Cost (Travel Time)

When inserting an unrouted customer we take into 
account: 

(a) increase in total travel time
(b) change in the fairness cost
(c) outlier cost (if any)
(d) compactness cost (if any) 



Insertion Cost (Time window shift)

Insert v  between i and j in route C: 

Costs proportional to window shrinkage of:

1. Inserted Customer 

2. Next  customer early time push-forward  

3. Previous customer latest time push back

[Solomon, 1987]



Insertion Cost (Time window shift)

WHY TIME-WINDOW SHRINKAGE COST? 



 Computational cost?

Construction Heuristic:

                          O(LgN) 
1. Recompute the minimum cost only for the top L customers and then pick the 

lowest for insertion.
2. Narrow the list of feasible insertion points initially.

(if considering insertion of v after customer i) 

3. Instead of considering all insertion points, consider only  g nearest neighbors. 

 



PART 2: Improvement Heuristic

   How do we improve the initial feasible routes? 
      

Reconfiguration of  routes 

(a) intra- or (b) inter-route 

Move or switch customers within a route

.    Change sequence of visits over a route segment

  Merge and split pairs of routes 



Mode 1: Ruin and Recreate
2-PHASES

 EJECTION REINSERT
     



Ejection Types

Radial : Pick a customer at random and eject  the nearest B 
customers.

(Temporal) Radial : Pick a customer at random and eject  the nearest B 
customers whose early times are closest.

Random: Eject B  of random customers.
Cost :  Eject B of most ‘costly’ customers.

B:  U[ 0,  fN ] 
Time windows of the ejected customers are reset to original slots and the routes 
are reconnected.

f~0.15

( Schrimpf et al, 2000)

3. Fairness 



Reinsertion

1. Insertion order : minimization of travel time and window shifts  to nearest neighbor. 

2. Reinsertion procedure:    same as  construction heuristic. 

Computational complexity: 

V (No of iterations)  X
 fN/2 (customers to reinsert)  X 
 W(top insertion locations based on distance)

O(fVNW)



Reinsertion with Relocation

● Given the capacity constraint, the insertion at a location in route r may reduce cost but 
could violate the capacity constraint.

● In this case, we seek to identify a suitable customer on that route and relocate it to another 
route r1. 

● If that other route’s max capacity is exceeded, we would then try to do the same relocation 
operation for a customer on route r1. 

● We compute the total cost associated with these relocation moves and we proceed with it if 
that is less than the next best alternative.



Mode 2: k-opt edge exchanges

● 2-Opt

Remove two links in the route and rewire them if the combined distance has been 
reduced.



Mode 2: k-opt edge exchanges

●  3-Opt

Likewise remove three links and rewire the route. 



Mode 2: k-opt edge exchanges

● 2-Opt*

Start with two distinct but nearby routes and swap a sequence of 
customer visits between them as shown. 



Mode 3: Lambda Exchange

● For a given pair of routes,  rA and rB, remove sA and sB customer from each (with  
max(|sA|,|sB|) < λ ) and insert it into the other route .

● The reinsertion again follows a similar procedure of identifying the location that 
minimizes the total cost.

● The criteria for identifying customers to remove is based on contribution to 
increase in travel time or total cost.



Time window violations

● Scenarios where there are seemingly no feasible solutions. 

● We consider time windows as a soft-constraint and permit breaches but at the 
same time minimize their occurrence and magnitude.

● At insertion (or reinsertion), if there are no feasible locations, then we identify the 
location that minimizes the total combined breach.

● In fact, we consider the combination of total breach and extra travel time on the 
route. 



Simulated Annealing

After reinsertion of ejected customers, we recalculate the change in the 
cost 

If  cost decreases, we accept the new configuration and proceed to the 
next iteration.

Accept the solution with probability

Motivation: Avoid getting stuck in a local minimal 

‘Temperature’   where t is the current iteration 
number ; 
 V is the total number of iterations

 

As T decreases, we the search becomes narrower and at T=0, we recover the greedy algorithm. 



Simulated Annealing (Breach)

A separate simulated annealing step is carried out for the total breach.

The new configuration should clear both the simulated annealing operations; 
else the previous configuration is restored. 



Results (Time Windows)

Out of box solver Our algorithm



Results (Time Windows)

Out-of-box (8 vehicles)

Travel : 4542.85 
 Fairness : 266.14 

Outlier :916.1
 Compactness: 2900.22 

 Total: 8625.29 

Our algorithm (8 vehicles)
 

Travel : 4481.95
 Fairness : 150.34
 Outlier :422.49

 Compactness: 768.1 
 Total: 5822.86



Results (Without Time Windows)

Out of box solver Our algorithm



              Results (Without Time Windows)

Out-of-box (29 vehicles)

 Travel : 5383.570362 
 Fairness : 625.252579 
 Outlier :11078.721303 
 Compactness: 8005.953538 
 Total: 25093.497783 

Our algorithm (29 vehicles)
  

Travel : 5269.445307 
 Fairness : 2386.762732 
 Outlier :3113.384236 
 Compactness: 2408.239887 
 Total: 13177.832162 



  Time Windows with breaches

Out of box solver Our algorithm



  
    Time Windows with breaches

Out-of-box (6 vehicles)

Breach (704 minutes, 11 customers)
 Travel : 5310.361508 
 Fairness : 256.647875 
 Outlier :950.873044 
 Compactness: 983.895939 
 Total: 7501.778366 

Our algorithm (6 vehicles)
 

Breach(476 minutes, 7 customers) 
 Travel : 5318.646974 
 Fairness : 239.422382 
 Outlier :840.246680 
 Compactness: 1812.622152 
 Total: 8210.938188 
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