
Solving the vehicle routing problem
for optimizing shipment delivery

Venkateshan K

 Context: Last Mile Delivery

• Delivery Hub: Wishmasters (FEs) carry a subset of shipments and follow a path delivering the

shipments to the customers.

• Heterogeneous hubs: shipments vary from less than 100 to over 1000.

• Question - How should the shipments be assigned to FEs? Subsequent, what path should the FEs

follow to deliver the shipments?

 Routing Problem

HOW DO WE FIND THE BEST ASSIGNMENT AND PATH?

● Formulate it as an optimization problem

● Associate a cost function W with every configuration of routes and find the configuration

that minimizes the cost function.

● Standard choice for cost function : sum of the total travel times of all FEs/routes.

● A special case of a single FE : Traveling Salesman Problem (TSP)

Vehicle Routing Problem

● This is a generalization of TSP - the

Vehicle Routing Problem.

● Computation complexity : TSP is

NP-complete and naturally so is VRP

(formulated as decision problem; is there

a solution with total cost less than u?)

● 60 years since publication The

Truck Dispatching Problem [Dantzig

1959] introducing the VRP.

Planned vs On-Demand delivery

FULL INFORMATION

PARTIAL
INFORMATION

 RELEVANT FOR

 any business involving delivery of pre-determined shipments at

specific locations. Ex: e-commerce, online grocery ordering, postal

service, B2B planning and scheduling.

 CONTRAST WITH

On demand delivery - delivery/assignment planning happens on the

go as soon as the order is placed (online food ordering, hyperlocal

deliveries, cab aggregators).

Variants with additional constraints

 Vehicle Routing Problem with Time Window (VRPTW)

● Routing solution when customers are promised delivery time-window (say 12:00-14:00)

Capacitated Vehicle Routing Problem (CVRP)

● Maximum capacity of each vehicle/FE in terms of number of shipments.

Capacitated Vehicle Routing Problem with Time Windows (CVRPTW)

 Both constraints applied simultaneously (as most real world situations would be).

Out-of-box solver

● Optaplanner (Java package) - currently in use

● Limitations (Results)

○ Routes tend to be elongated and stretched out.

○ Large overlap in the regions covered by the routes

● Limitations (Flexibility)

1. Probe the details of the algorithm

2. Change the heuristic approaches

3. Examine effects of specific choices of cost

functions/hyperparameters.

Python out-of-box solvers

Local Solver

Google OR Tools

Neither allow custom
penalties

Formulating the problem

Given :
1. N customers (and DEPOT) locations (vertices)

2. Pairwise travel time (or distance) matrix

 3. Serviceable time window (customer)

 4. m vehicles each with max capacity Q each

Formulating the problem

Determine:

Routes

1. each customer is covered by exactly one route
 2. time window compatibility

 3

 Minimize the cost function

Feasible solution : All the hard constraints (time-window and capacity are
satisfied)

Cost function choices?
Should reflect the desired characteristics of the route.

Multiple Objectives

1. Minimize travel time - studied in classical formulation

2. Minimize uneven distribution of shipments

3. Minimize occurrence and magnitude of outliers

4. Minimize stretched or extended routes.

Associate a cost component for each

 Cost Function Expansion
1. Total travel time

2. Even distribution of shipments across the vehicles.

 “Fairness” cost : UF ∝ σ/E[n]

 Normalization: √N

Dealing with Outliers (Intuition)

Intuition: Neighborhood distance

EASY

DODGY
25th percentile distance (7th nearest
neighbor)

[0.81 0.7 1.01 0.86 0.72 0.67 0.69 0.7 0.8 0.92 1.03 1.09 0.83
0.91 0.78 0.88 0.57 1.01 0.76 0.73 0.72 0.62 0.86 1.03 1.42 4.12
4.29 3.84 4.45 4.2]

Dealing with Outliers (Formulation)

We determine a z-score for each point in the route depending on the
distance to the percentile nearest neighbor.

 - Median

 - Median absolute deviation (from median)

Route compactness

Defining compactness:

80th percentile of the sorted distance for
every customer

80th percentile of those numbers : 1.35

TOTAL COST

Approximate Algorithms Approach

● Exact algorithms are computationally expensive and we use approximate

algorithms, i.e., those that need not converge to optimality.

● Broadly, these are characterized by primarily two stages

○ Construction Heuristics - construction of initial feasible routes (m routes

satisfying the constraints)

○ Improvement Heuristics - iteratively improve the routes by intra- and inter-

route reconfiguration

Construction Heuristic

At any given iteration, there are a set of partially constructed routes.

 For a given unrouted customer, we consider all feasible insertion positions

We compute the minimum cost for each vertex

Construction Heuristic..cont’d
(Algorithm)

Insert the
customer that
minimizes the
minimum
insertion cost.

Insertion Cost (Travel Time)

When inserting an unrouted customer we take into
account:

(a) increase in total travel time
(b) change in the fairness cost
(c) outlier cost (if any)
(d) compactness cost (if any)

Insertion Cost (Time window shift)

Insert v between i and j in route C:

Costs proportional to window shrinkage of:

1. Inserted Customer

2. Next customer early time push-forward

3. Previous customer latest time push back

[Solomon, 1987]

Insertion Cost (Time window shift)

WHY TIME-WINDOW SHRINKAGE COST?

 Computational cost?

Construction Heuristic:

 O(LgN)
1. Recompute the minimum cost only for the top L customers and then pick the

lowest for insertion.
2. Narrow the list of feasible insertion points initially.

(if considering insertion of v after customer i)

3. Instead of considering all insertion points, consider only g nearest neighbors.

PART 2: Improvement Heuristic

 How do we improve the initial feasible routes?

Reconfiguration of routes

(a) intra- or (b) inter-route

Move or switch customers within a route

. Change sequence of visits over a route segment

 Merge and split pairs of routes

Mode 1: Ruin and Recreate
2-PHASES

 EJECTION REINSERT

Ejection Types

Radial : Pick a customer at random and eject the nearest B
customers.

(Temporal) Radial : Pick a customer at random and eject the nearest B
customers whose early times are closest.

Random: Eject B of random customers.
Cost : Eject B of most ‘costly’ customers.

B: U[0, fN]
Time windows of the ejected customers are reset to original slots and the routes
are reconnected.

f~0.15

(Schrimpf et al, 2000)

3. Fairness

Reinsertion

1. Insertion order : minimization of travel time and window shifts to nearest neighbor.

2. Reinsertion procedure: same as construction heuristic.

Computational complexity:

V (No of iterations) X
 fN/2 (customers to reinsert) X
 W(top insertion locations based on distance)

O(fVNW)

Reinsertion with Relocation

● Given the capacity constraint, the insertion at a location in route r may reduce cost but
could violate the capacity constraint.

● In this case, we seek to identify a suitable customer on that route and relocate it to another
route r1.

● If that other route’s max capacity is exceeded, we would then try to do the same relocation
operation for a customer on route r1.

● We compute the total cost associated with these relocation moves and we proceed with it if
that is less than the next best alternative.

Mode 2: k-opt edge exchanges

● 2-Opt

Remove two links in the route and rewire them if the combined distance has been
reduced.

Mode 2: k-opt edge exchanges

● 3-Opt

Likewise remove three links and rewire the route.

Mode 2: k-opt edge exchanges

● 2-Opt*

Start with two distinct but nearby routes and swap a sequence of
customer visits between them as shown.

Mode 3: Lambda Exchange

● For a given pair of routes, rA and rB, remove sA and sB customer from each (with
max(|sA|,|sB|) < λ) and insert it into the other route .

● The reinsertion again follows a similar procedure of identifying the location that
minimizes the total cost.

● The criteria for identifying customers to remove is based on contribution to
increase in travel time or total cost.

Time window violations

● Scenarios where there are seemingly no feasible solutions.

● We consider time windows as a soft-constraint and permit breaches but at the
same time minimize their occurrence and magnitude.

● At insertion (or reinsertion), if there are no feasible locations, then we identify the
location that minimizes the total combined breach.

● In fact, we consider the combination of total breach and extra travel time on the
route.

Simulated Annealing

After reinsertion of ejected customers, we recalculate the change in the
cost

If cost decreases, we accept the new configuration and proceed to the
next iteration.

Accept the solution with probability

Motivation: Avoid getting stuck in a local minimal

‘Temperature’ where t is the current iteration
number ;
 V is the total number of iterations

As T decreases, we the search becomes narrower and at T=0, we recover the greedy algorithm.

Simulated Annealing (Breach)

A separate simulated annealing step is carried out for the total breach.

The new configuration should clear both the simulated annealing operations;
else the previous configuration is restored.

Results (Time Windows)

Out of box solver Our algorithm

Results (Time Windows)

Out-of-box (8 vehicles)

Travel : 4542.85
 Fairness : 266.14

Outlier :916.1
 Compactness: 2900.22

 Total: 8625.29

Our algorithm (8 vehicles)

Travel : 4481.95
 Fairness : 150.34
 Outlier :422.49

 Compactness: 768.1
 Total: 5822.86

Results (Without Time Windows)

Out of box solver Our algorithm

 Results (Without Time Windows)

Out-of-box (29 vehicles)

 Travel : 5383.570362
 Fairness : 625.252579
 Outlier :11078.721303
 Compactness: 8005.953538
 Total: 25093.497783

Our algorithm (29 vehicles)

Travel : 5269.445307
 Fairness : 2386.762732
 Outlier :3113.384236
 Compactness: 2408.239887
 Total: 13177.832162

 Time Windows with breaches

Out of box solver Our algorithm

 Time Windows with breaches

Out-of-box (6 vehicles)

Breach (704 minutes, 11 customers)
 Travel : 5310.361508
 Fairness : 256.647875
 Outlier :950.873044
 Compactness: 983.895939
 Total: 7501.778366

Our algorithm (6 vehicles)

Breach(476 minutes, 7 customers)
 Travel : 5318.646974
 Fairness : 239.422382
 Outlier :840.246680
 Compactness: 1812.622152
 Total: 8210.938188

References

● [Desrochers, 2008] M. Desrochers, J. Desrosiers, and M. Solomon, “A New Optimization Algorithm for the Vehicle Routing

Problem with Time Windows,” Operations Research, vol. 40, pp. 342–354, apr 2008.

● [Fischetti,1994]M. Fischetti, P. Toth, and D. Vigo, “A Branch-and-Bound Algorithm for the Capacitated Vehicle Routing

Problem on Directed Graphs,” Operations Research, vol. 42, pp. 846–859, oct 1994.

● [Hashimoto,2008] H. Hashimoto, M. Yagiura, and T. Ibaraki, “An iterated local search algorithm for the time-dependent

vehicle routing problem with time windows,”Discrete Optimization, vol. 5, pp. 434–456, may 2008

● [Kohl,1997]N. Kohl and O. B. G. Madsen, “An Optimization Algorithm for the Vehicle Routing Problem with Time Windows

Based on Lagrangian Relaxation,”Operations Research, vol. 45, pp. 395–406, jun 1997

● [Solomon, 1987] M. M. Solomon, “Algorithms for the Vehicle Routing and Scheduling Problems with Time Window

Constraints,” Operations Research, vol. 35, pp. 254–265, apr 1987

● [Schrimpf, 2000] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck, “Record Breaking Optimization Results

Using the Ruin and Recreate Principle,”Journal of Computational Physics, vol. 159, pp. 139–171, apr 2000.

