Developmental Maturation of Causal Signaling Hubs in Voluntary Control of Saccades and Their Functional Controllability

Published in "Cerebral Cortex"
Yuan Zhang , Srikanth Ryali , Weidong Cai , Kaustubh Supekar , Ramkrishna Pasumarthy , Aarthi Padmanabhan , Bea Luna , Vinod Menon

The ability to adaptively respond to behaviorally relevant cues in the environment, including voluntary control of automatic but inappropriate responses and deployment of a goal-relevant alternative response, undergoes significant maturation from childhood to adulthood. Importantly, the maturation of voluntary control processes influences the developmental trajectories of several key cognitive domains, including executive function and emotion regulation. Understanding the maturation of voluntary control is therefore of fundamental importance, but little is known about the underlying causal functional circuit mechanisms. Here, we use state-space and control-theoretic modeling to investigate the maturation of causal signaling mechanisms underlying voluntary control over saccades. We demonstrate that directed causal interactions in a canonical saccade network undergo significant maturation between childhood and adulthood. Crucially, we show that the frontal eye field (FEF) is an immature causal signaling hub in children during control over saccades. Using control-theoretic analysis, we then demonstrate that the saccade network is less controllable in children and that greater energy is required to drive FEF dynamics in children compared to adults. Our findings provide novel evidence that strengthening of causal signaling hubs and controllability of FEF are key mechanisms underlying age-related improvements in the ability to plan and execute voluntary control over saccades.