Dynamical systems approaches to solving time-varying convex optimization problem with inequality constraints

Published in "IEEE TAC"
Arun D. Mahindrakar , Rejitha , Umesh Vaidya

Optimization problems emerging in most of the real-world applications are dynamic, where either the objective function or the constraints change continuously over time. This paper proposes projected primal-dual dynamical system approaches to track the primal and dual optimizer trajectories of an inequality constrained timevarying (TV) convex optimization problem with a strongly convex objective function. First, we present a dynamical system that asymptotically tracks the optimizer trajectory of an inequality constrained TV optimization problem. Later we modify the proposed dynamics to achieve the convergence to the optimizer trajectory within a fixed time. The asymptotic and fixed-time convergence of the proposed dynamical systems to the optimizer trajectory is shown via Lyapunov based analysis. Finally, we consider the TV extended Fermat -Torricelli problem (eFTP) of minimizing the sum-of-squared distances to a finite number of nonempty, closed and convex TV sets, to illustrate the applicability of the projected dynamical systems proposed in this paper.